انتخاب متغیر در شبکه های عصبی پرسپترون چندلایه به منظور پیش بینی با استفاده از نگاشت های خود سازمان ده (SOM)

Authors

  • خاشعی, مهدی
  • بیجاری, مهدی
  • مخاطب رفیعی, فریماه
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی سقوط بازار سهام با استفاده از شبکه های عصبی نگاشت خود سازمان ده

سقوط بازار پدیده­ای است که سبب از دست رفتن ثروت و دارایی سرمایه‎گذاران در بازۀ زمانی نسبتاً کوتاهی می­شود، از این رو تلاش برای پیش­بینی آن از اهمیت زیادی برای سرمایه­گذاران، سیاست‎گذاران، نهادهای مالی و دولت برخوردار است. بررسی اجمالی تئوری­ها و مدل‎های ارائه‎شدۀ پیش­بینی سقوط در بازار سهام نشان می­دهد میان پژوهشگران دربارۀ الگوهای مشاهده‎شدۀ متغیرها، مانند حجم معامله، بازده‎ها، نوسان‎پذیری، عوا...

full text

پیش بینی سقوط بازار سهام با استفاده از شبکه های عصبی نگاشت خود سازمان ده

سقوط بازار پدیده­ای است که سبب از دست رفتن ثروت و دارایی سرمایه‎گذاران در بازۀ زمانی نسبتاً کوتاهی می­شود، از این رو تلاش برای پیش­بینی آن از اهمیت زیادی برای سرمایه­گذاران، سیاست‎گذاران، نهادهای مالی و دولت برخوردار است. بررسی اجمالی تئوری­ها و مدل‎های ارائه‎شدۀ پیش­بینی سقوط در بازار سهام نشان می­دهد میان پژوهشگران دربارۀ الگوهای مشاهده‎شدۀ متغیرها، مانند حجم معامله، بازده‎ها، نوسان‎پذیری، عوا...

full text

پیش بینی دماهای ماهانه ایستگاه های همدید منتخب استان اصفهان، با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه

پیش بینی دما از کاربردی ترین برآوردهای عناصر آب و هوایی است. امروزه بخش های کشاورزی و صنعت وابستگی زیادی به شرایط دمایی (آب و هوا) دارند. دما یکی از فراسنج های بسیار مهم آب و هوایی است و از عوامل اصلی هویت آب و هوایی هر ناحیه محسوب می شود. هدف از انجام این پژوهش، مدل سازی برای پیش بینی میانگین دمای ماهانه ایستگاه های منتخب استان اصفهان است؛ از این رو، پس از بررسی طول دوره آماری ایستگاههای موجود...

full text

پیش بینی بزرگای زلزله با استفاده از شبکه عصبی پرسپترون چندلایه

به دلیل نواقص موجود در روش های پیشین محاسبه بزرگای زلزله، شبکه عصبی به عنوان یک روش جدید برای این منظور آزمایش می گردد. در این مقاله نوعی شبکه عصبی با نام پرسپترون چندلایه برای پیش بینی بزرگای گشتاوری زلزله مورد استفاده قرار گرفته است. شبکه عصبی پرسپترون شامل سه لایه اصلی با نام های لایه ورودی، لایه پنهان و لایه خروجی است. ورودی های این شبکه شش متغیر مربوط به مکان و زمان وقوع زلزله و همچنین مشخ...

full text

پیش بینی خطر ورشکستگی با استفاده از شبکه های عصبی مصنوعی مبتنی بر رویکرد پرسپترون چندلایه(شواهد تجربی: بورس اوراق بهادار تهران)

زمینه: در پژوهش حاضر به شناسایی عوامل موثر بر پیش بینی ورشکستگی شرکتهای ایرانی با استفاده از سیستم شبکه های عصبی مصنوعی (ANN) بر مبنای رویکرد پرسپترون چندلایه (PS) و ارائه یک مدل آماری مناسب به منظور برآورد ورشکستگی شرکتهای ایرانی، با استفاده از یافته های حاصل از اجرای شبکه ANN پرداخته شده است. هدف: در پژهش حاضر به دنبال پاسخ گویی به این پرسش هستیم که آیا عوام...

full text

پیش بینی مکانی-زمانی مناطق پرخطر بیماری لپتوسپیروز با استفاده از روش های رگرسیون وزندار جغرافیایی و شبکه عصبی پرسپترون چندلایه

تشخیص عوامل بیماری­زا، شناسایی تجمع مکانی بیماری و یافتن الگوی انتشار آن در محیط از ضروری­ترین نیازها در زمینه بهداشت عمومی و مدیریت بیماری­ها به شمار می­آیند. بیماری لپتوسپیروز یکی از بیماری­های مشترک انسان و دام می­باشد که تقریبا در تمام نقاط جهان به­ویژه در مناطق گرمسیری، نیمه­گرمسیری و نواحی گرم و مرطوب شیوع بیشتری دارد. شرایط آب و هوایی معتدل و مرطوب در استانهای شمالی ایران این مناطق را در...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33  issue 1

pages  125- 139

publication date 2014-07

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023